Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 736: 139081, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32504866

RESUMO

Seafood is one of the leading imported products implicated in foodborne outbreaks worldwide. Coastal marine environments are being increasingly subjected to reduced water quality from urbanization and leading to contamination of important fishery species. Given the importance of seafood exchanged as a global protein source, it is imperative to maintain seafood safety worldwide. To illustrate the potential health risks associated with urbanization in a coastal environment, we use next-generation high-throughput amplicon sequencing of the 16S ribosomal RNA gene combined with infrared spectroscopy to characterize and quantify a vast range of potential human bacterial pathogens and microdebris contaminants in seawater, sediment and an important oyster fishery along the Mergui Archipelago in Myanmar. Through the quantification of >1.25 million high-quality bacterial operational taxonomic unit (OTU) reads, we detected 5459 potential human bacterial pathogens belonging to 87 species that are commonly associated with gut microbiota and an indication of terrestrial runoff of human and agricultural waste. Oyster tissues contained 51% of all sequenced bacterial pathogens that are considered to be both detrimental and of emerging concern to human health. Using infrared spectroscopy, we examined a total of 1225 individual microdebris particles, from which we detected 78 different types of contaminant materials. The predominant microdebris contaminants recovered from oyster tissues included polymers (48%), followed by non-native minerals (20%), oils (14%) and milk supplement powders (14%). Emerging technologies provide novel insights into the impacts of coastal development on food security and risks to human and environmental health.


Assuntos
Monitoramento Ambiental , Urbanização , Animais , Contaminação de Alimentos/análise , Humanos , Mianmar , Alimentos Marinhos , Água do Mar
2.
Sci Total Environ ; 719: 135140, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31859059

RESUMO

Current policy and management for marine water quality in the Great Barrier Reef (GBR) in north-eastern Australia primarily focusses on sediment, nutrients and pesticides derived from diffuse source pollution related to agricultural land uses. In addition, contaminants of emerging concern (CECs) are known to be present in the marine environments of the GBR and the adjacent Torres Strait (TS). Current and projected agricultural, urban and industrial developments are likely to increase the sources and diversity of CECs being released into these marine ecosystems. In this review, we evaluate the sources, presence and potential effects of six different categories of CECs known to be present, or likely to be present, in the GBR and TS marine ecosystems. Specifically, we summarize available monitoring, source and effect information for antifouling paints; coal dust and particles; heavy/trace metals and metalloids; marine debris and microplastics; pharmaceuticals and personal care products (PPCPs); and petroleum hydrocarbons. Our study highlights the lack of (available) monitoring data for most of these CECs, and recommends: (i) the inclusion of all relevant environmental data into integrated databases for building marine baselines for the GBR and TS regions, and (ii) the implementation of local, targeted monitoring programs informed by predictive methods for risk prioritization. Further, our spatial representation of the known and likely sources of these CECs will contribute to future ecological risk assessments of CECs to the GBR and TS marine environments, including risks relative to those identified for sediment, nutrients and pesticides.

3.
Sci Rep ; 8(1): 16422, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401888

RESUMO

Marine debris, and in particular plastic pollution, is ubiquitous throughout global marine environments. Here, we present a classification of marine microdebris (i.e. debris between 0.1 µm and <5 mm) tailored to represent synthetic, semi-synthetic and naturally-derived items. The specific aim of this classification is to introduce a level of consistency in the higher-level characterisation of marine microdebris, thereby improving the overall reporting on marine microdebris contamination. We first conducted an extensive literature review on the accumulation of ingested debris in fish to identify discrepancies in marine microdebris reporting as a basis for the new classification. The review reveals the diverse nature of ingested marine microdebris, including items that are non-plastic but often incorrectly reported on as microplastics. We then applied our classification to a case study on wild-caught juvenile coral trout, Plectropomus spp., from the Great Barrier Reef World Heritage Area, Australia. This first report on accumulation of ingested marine debris in commercial fish on the reef demonstrates a high frequency of occurrence and a prevalence of semi-synthetic and naturally-derived fibres. Based on our findings, we offer recommendations on potential improvements for the classification presented, ultimately contributing to a more realistic assessment of the ecological risks of marine microdebris.


Assuntos
Recifes de Corais , Monitoramento Ambiental , Poluentes Ambientais/classificação , Peixes , Animais , Austrália , Poluentes Ambientais/toxicidade
4.
MethodsX ; 5: 812-823, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112289

RESUMO

Quantifying the extent of microplastic (<5 mm) contamination in the marine environment is an emerging field of study. Reliable extraction of microplastics from the gastro-intestinal content of marine organisms is crucial to evaluate microplastic contamination in marine fauna. Extraction protocols and variations thereof have been reported, however, these have mostly focussed on relatively homogenous samples (i.e. water, sediment, etc.). Here, we present a microplastic extraction protocol for examining green turtle (Chelonia mydas) chyme (i.e. ingested material and digestive tract fluid), which is a heterogeneous composite of various organic dietary items (e.g. seagrass, jellyfish) and incidentally-ingested inorganic materials (sediment). Established extraction methods were modified and combined. This protocol consists of acid digestion of organic matter, emulsification of residual fat, density separation from sediment, and chemical identification by Fourier transform-infrared spectroscopy. This protocol enables the extraction of the most common microplastic contaminants>100 µm: polyethylene, high-density polyethylene, (aminoethyl) polystyrene, polypropylene, and polyvinyl chloride, with 100% efficiency. This validated protocol will enable researchers worldwide to quantify microplastic contamination in turtles in a reliable and comparable way. •Optimization of microplastic extraction from multifarious tissues by applying established methods in a sequential manner.•Effective for heterogenous samples comprising organic and inorganic material.

5.
Mar Pollut Bull ; 127: 743-751, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475719

RESUMO

Ocean contamination by plastics is a global issue. Although ingestion of plastic debris by sea turtles has been widely documented, contamination by microplastics (<5mm) is poorly known and likely to be under-reported. We developed a microplastic extraction protocol for examining green turtle (Chelonia mydas) chyme, which is multifarious in nature, by modifying and combining pre-established methods used to separate microplastics from organic matter and sediments. This protocol consists of visual inspection, nitric acid digestion, emulsification of residual fat, density separation, and chemical identification by Fourier transform infrared spectroscopy. This protocol enables the extraction of polyethylene, high-density polyethylene, (aminoethyl) polystyrene, polypropylene, and polyvinyl chloride microplastics >100µm. Two macroplastics and seven microplastics (two plastic paint chips and five synthetic fabric particles) were isolated from subsamples of two green turtles. Our results highlight the need for more research towards understanding the impact of microplastics on these threatened marine reptiles.


Assuntos
Ingestão de Alimentos , Monitoramento Ambiental/métodos , Conteúdo Gastrointestinal/química , Plásticos/análise , Tartarugas , Poluentes Químicos da Água/análise , Animais , Plásticos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
6.
Mar Pollut Bull ; 114(1): 505-514, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28341127

RESUMO

Successful reproduction and larval dispersal are important for the persistence of marine invertebrate populations, and these early life history processes can be sensitive to marine pollution. Coal is emerging as a contaminant of interest due to the proximity of ports and shipping lanes to coral reefs. To assess the potential hazard of this contaminant, gametes, newly developed embryos, larvae and juveniles of the coral Acropora tenuis were exposed to a range of coal leachate, suspended coal, and coal smothering treatments. Fertilisation was the most sensitive reproductive process tested. Embryo survivorship decreased with increasing suspended coal concentrations and exposure duration, effects on larval settlement varied between treatments, while effects on juvenile survivorship were minimal. Leachate exposures had negligible effects on fertilisation and larval settlement. These results indicate that coral recruitment could be affected by spills that produce plumes of suspended coal particles which interact with gametes and embryos soon after spawning.


Assuntos
Antozoários , Carvão Mineral , Recifes de Corais , Poluentes da Água , Animais , Larva , Estágios do Ciclo de Vida
7.
Sci Rep ; 6: 25894, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174014

RESUMO

Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l(-1)) of suspended coal dust (<63 µm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l(-1)) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.


Assuntos
Alismatales/efeitos dos fármacos , Antozoários/efeitos dos fármacos , Carvão Mineral/efeitos adversos , Perciformes/crescimento & desenvolvimento , Poluentes Químicos da Água/efeitos adversos , Alismatales/crescimento & desenvolvimento , Animais , Antozoários/crescimento & desenvolvimento , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Medição de Risco
8.
Environ Monit Assess ; 185(11): 9089-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23719740

RESUMO

Marine ecosystems worldwide are threatened by aquatic pollution; however, there is a paucity in data from the Caribbean region. As such, five heavy metals (arsenic, cadmium, copper, zinc, mercury) were measured in tissues of the scleractinian corals Porites furcata and Agaricia tenuifolia and in adjacent sediments in the Bocas del Toro Archipelago, Panama. Samples were collected from five reef sites along a gradient of distance from an international shipping port and were analysed using inductively coupled plasma optical emission spectrometry and atomic absorption spectrophotometry for mercury. Copper and zinc were the most abundant metals and ranged from 11 to 63 mg kg(-1) and from 31 to 185 mg kg(-1) in coral tissues, respectively. The highest concentration of each metal was measured in P. furcata tissues, with copper and mercury concentrations significantly higher in P. furcata than in A. tenuifolia at every site. These results suggest that P. furcata has a higher affinity for metal accumulation and storage than A. tenuifolia. With the exception of cadmium, metal concentrations in coral tissues were generally elevated at coral reefs in closer proximity to the port; however, this pattern was not observed in sediments. Hard coral cover was lowest at reefs in closest proximity to the port, suggesting that metal pollution from port-related activities is influencing hard coral abundance at nearby coral reefs.


Assuntos
Antozoários/química , Recifes de Corais , Monitoramento Ambiental , Metais Pesados/análise , Poluentes Químicos da Água/análise , Animais , Panamá , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...